Deposition Technologies for >500GB/in² PMR and HAMR Write Heads
Outline

- Background
- New technologies for PMR pole deposition
- Optical films for HAMR write heads
- Summary
Background – Technology Roadmap

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technologies</td>
<td>PMR, DFH</td>
<td>HAMR, Shingled (SWR), DFH</td>
<td>HAMR, Shingled (SWR), 2D read-back, BPM</td>
</tr>
<tr>
<td>Key Areas</td>
<td>Sigma reduction, Damascene writer, Reduced HOC</td>
<td>Light delivery, Near-field transducer</td>
<td>2D signal processing, Media patterning</td>
</tr>
</tbody>
</table>

Technologies
- PMR
- DFH
- HAMR
- Shingled (SWR)
- Near-field transducer
- 2D read-back
- BPM

Key Areas
- Sigma reduction
- Damascene writer
- Reduced HOC
- Light delivery
- Near-field transducer
- 2D signal processing
- Media patterning
Damasceene Processes for Advanced PMR Poles
Motivation for Damascene Processes

- Two types of process are used for PMR poles
 - Subtractive process (etch)
 - Additive process (Damascene)

Damascene Processes are Preferred as Geometries Shrink
Requirements for Damascene Pole Processes

- Key steps in the damascene process
 - Deposition of seed layer
 - Plating of magnetic materials
 - CMP

- Seed layer requirements
 1. Conformal
 2. Conductive / Low resistivity
 3. Void free plating of magnetic materials with desired properties
 4. Deposited at TFMH compatible temperatures (<200°C)
 5. Good thickness control
 6. Adhesion

- CVD deposition of Ru meets the above requirements

Fabrication Sequence

1. Etch
2. CVD Ru Deposition
3. Plate + CMP
Ru CVD for Damascene Writer Pole
Enabling Features

- CVD Ru is unique in being able to combine several key features
 1. Appropriate properties as a seed layer for plating
 - Conformal
 - Conductive / Low resistivity
 2. Appropriate as a seed layer for Magnetic properties of plated layer
 - Void free plating of magnetic materials
 - High Bs plated layer
 3. Provides ability to fine tune final track-width of the PMR pole
 - Good thickness control
 - Compensate for trench etch variation

- Ru CVD also used as a plating seed for wrap around shields
 - Enables narrower track-widths by reduced cross track interference
Ru CVD Chemistry

- Precursor: RuO₄
 - ToRuS Blend from Air Liquide
 - Mixture of RuO₄ in two fluorinated solvents
 - Liquid at room temperature
 - High Vapor Pressure
 - Rapid Reaction – practical deposition rates
 - Low Temperature Process (170°C)
 - Small molecule that nucleates on all tested surfaces

- Two step reaction
 - (heated wafer)
 - A. RuO₄ → RuO₂ + O₂ (not self limiting)
 - B. RuO₂ + 2H₂ → Ru + 2H₂O

- Accomplished as cyclic CVD in 4 steps
 - Steps 1,2: Reaction A: + Inert Gas Purge
 - Steps 3,4: Reaction B: + Inert Gas Purge

Repeat to get desired thickness
System Architecture

- RuO$_4$ decomposition reaction to RuO$_2$ is catalyzed by Ru but not self limiting
- Cross flow architecture requires self limiting reactions to achieve good WiW uniformity and precursor utilization
- Showerhead architecture allows for localized flow optimization to achieve optimum WiW uniformity and precursor utilization

NEXUS Ru CVD uses a showerhead design
Deposition Conformality

- Cross-section SEM
- ~400Å CVD Ru on SiO₂
- Deposition conformality similar at process temperatures from 170-200°C
- Deposition conformality similar for features of various sizes
- Conformality of adhesion enhancing under-layers can impact stack conformality
CVD Ru: Thickness Control, Resistivity

- Growth rate is linear with number of cycles
 - Thickness can be accurately targeted
 - Initial nucleation delay <7 cycles at 200°C

- Growth rate varies with temperature

- Resistivity change slightly with temperature
 - < 20µΩ-cm at 400Å on SiO₂ at 170-210°C

Good thickness control, appropriate electrical properties for plating
Ru CVD film stress ~2600MPa
Stress can be tuned to desired value by periodic plasma annealing
Stress driven more compressive with:
- More plasma anneals
- Higher power plasma anneals
- Lower pressure plasma anneals
Marathon Test Through Ampoule Life

- Data from one 3.6L ampoules with single process recipe on Lab Tool
- 150mm wafers, 190°C deposition temp
- 632 wafers processed within tight specifications (black line shows End Of Life)
 - Mean thickness at 401.6Å with 3σ variation of 1.45%
 - Ampoule Utilization at 83Å/cc

Good WTW and WIW repeatability across ampoule life < 2% 3σ Non-Uniformity up to 650 wafers
CVD Ru: Uniformity, Repeatability (200mm)

- 12-wafer lot on Lab Tool: WIW < 3% 3σ, WTW ~1% 3σ
- Multiple ampoules on Lab Tool: WIW ~3% 3σ, WTW ~2.5% 3σ
- Data through ampoule life: WIW <6% 3σ, WTW < 2% 3σ

Good uniformity and repeatability through multiple ampoules
< 6% 3σ WIW, < 2% 3σ WTW through ampoule life
Summary

- NEXUS CVD Ru meets the film properties required of a conformal seed layer for damascene processing of high areal density write poles and shields
 - Conformality: >0.98
 - Deposition temperature: <200°C
 - Resistivity: <20μΩcm
 - Uniformity: <3%3σ
 - Repeatability: <2%3σ
 - High efficiency of chemical use: >80Å/ml

- The showerhead architecture is ideal for the ToRuS based CVD Ru process

- The NEXUS CVD Ru system has been proven in production
 - Demonstrated >90% uptime
 - Stable film performance over lifetime of ampoule
Deposition of Optical Materials for HAMR Write Heads
HAMR Technology

- **Overview**
 - HAMR is the leading candidate for >1TB/in² areal densities for write heads

- **Concept**
 - At high areal densities, write heads cannot produce enough field to record data in high coercivity media
 - By heating the media locally, the coercivity can be reduced and the data recorded
 - HAMR write heads incorporate a laser light and near field transducer to locally heat the media

- **Challenges**
 1. Integration of light source and delivery mechanism
 2. Thermal management
 3. **Low loss optical materials for light transmission**

HAMR is a key technology for >1Tb/in²
HAMR: Waveguide Materials

- Laser with optical waveguide
 - Core/Cladding for waveguides
- Requirements
 - Low and high index films
 - Low optical loss / defect free
 - Good Throughput

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>High n: >2 (Ta$_2$O$_5$) (core)</td>
</tr>
<tr>
<td></td>
<td>Low n: <2 (Al$_2$O$_3$) (cladding)</td>
</tr>
<tr>
<td>k</td>
<td>0 (below ellipsometer limit)</td>
</tr>
<tr>
<td>Optical Loss</td>
<td><10 dB/cm (cladding)</td>
</tr>
<tr>
<td></td>
<td><5 dB/cm (core)</td>
</tr>
<tr>
<td>Rate</td>
<td>100-500 Å/min (core)</td>
</tr>
<tr>
<td></td>
<td>500-1500 Å/min (cladding)</td>
</tr>
<tr>
<td>Uniformity</td>
<td>$<3%$ R/M (200mm)</td>
</tr>
</tbody>
</table>
PVD Deposition Technologies for Waveguide Films

<table>
<thead>
<tr>
<th>Technology</th>
<th>Property</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loss</td>
<td>Uniformity (R/M 200mm)</td>
</tr>
<tr>
<td>IBD</td>
<td><0.5 dB/cm</td>
<td><3%</td>
</tr>
<tr>
<td>PVD1 Dielectric Mode</td>
<td><5 dB/cm</td>
<td><3% Ta₂O₅</td>
</tr>
<tr>
<td>PVD1 Metal Mode</td>
<td><10 dB/cm</td>
<td><3.5% Al₂O₃</td>
</tr>
</tbody>
</table>

- PVD processing has flexibility of hardware and deposition modes
 - Hot chuck capability (up to 400°C)
 - Dielectric and metal modes of deposition
 - RF diode / DC magnetron
Ta$_2$O$_5$ Dielectric/Poisoned Mode Films

- No measurable change in optical properties (ellipsometry) operating at different O$_2$ flows in poison mode
- Processes show acceptable loss properties

<table>
<thead>
<tr>
<th>Process</th>
<th>O$_2$ flow (sccm)</th>
<th>Power (W)</th>
<th>Deposition Rate (A/min)</th>
<th>U% 1σ% 200 mm</th>
<th>Index</th>
<th>Index U% 1σ%</th>
<th>Loss Results Db/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process A</td>
<td>Flow 1</td>
<td>3000</td>
<td>350</td>
<td>0.5</td>
<td>2.12</td>
<td>0.1</td>
<td>1.51</td>
</tr>
<tr>
<td>Process B</td>
<td>Flow 2</td>
<td>1250</td>
<td>145</td>
<td>0.5</td>
<td>2.12</td>
<td>0.07</td>
<td>1.54</td>
</tr>
<tr>
<td>Process C</td>
<td>Flow 3</td>
<td>1250</td>
<td>155</td>
<td>1.0</td>
<td>2.13</td>
<td>0.07</td>
<td>1.66</td>
</tr>
</tbody>
</table>
Closed-loop control with High Speed MFC partial pressure controller

- Target voltage continuously monitored
- High speed piezo MFC: oxygen flow adjusted to maintain target voltage
- Can now operate in “forbidden” range of voltages
- Rate ~ 50% of Al deposition rate achievable
Al₂O₃: Optical Loss

- Strong dependence of optical loss on wafer deposition temperature
- No significant changes observed using ellipsometry measurement
 - Measure extinction coefficient zero for all above films.
 - Loss not correlated to measured refractive index
 - Within 1.63-1.66 range
Al₂O₃ Post Deposition Annealing

Optical Loss vs. Annealing Time and Temperature

<table>
<thead>
<tr>
<th>Annealing Time</th>
<th>Reference: 3.3 dB/cm (7 cm light streak)</th>
<th>Reference: 8.0 dB/cm (4-5 cm light streak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 dB</td>
<td>Optimized Annealing Process</td>
<td></td>
</tr>
<tr>
<td>5 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 dB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 dB</td>
<td>Reference data (no anneal)</td>
<td></td>
</tr>
</tbody>
</table>

- **Appropriate post-deposition annealing (<2hrs)** results in low loss Al₂O₃

Veeco has developed optimized annealing conditions that enable low temperature deposition of alumina with low-loss optical properties
Ta₂O₅ Thickness and Index Repeatability

Ta₂O₅ – 2000 Å

<table>
<thead>
<tr>
<th>Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WTW Thickness (1σ)</td>
<td>0.75% (300 A/min)</td>
</tr>
<tr>
<td>WIW Thickness (1σ)</td>
<td>0.75%</td>
</tr>
<tr>
<td>WTW Index (1σ)</td>
<td>0.08%</td>
</tr>
<tr>
<td>WIW Index (1σ)</td>
<td>0.24%</td>
</tr>
<tr>
<td>Index</td>
<td>2.13</td>
</tr>
<tr>
<td>Optical Loss</td>
<td><2dB/cm</td>
</tr>
<tr>
<td>Stress [MPa]</td>
<td>-147</td>
</tr>
</tbody>
</table>
Al₂O₂ Thickness and Index Repeatability

Al₂O₃ Thickness Repeatability

![Graph showing Al₂O₃ Thickness Repeatability](image)

Ta₂O₅ Index Repeatability

![Graph showing Ta₂O₅ Index Repeatability](image)

Alumina – 1μm

<table>
<thead>
<tr>
<th>Data</th>
<th>Thickness [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTW Thickness (1σ)</td>
<td>0.3% (1300 A/min)</td>
</tr>
<tr>
<td>WIW Thickness (1σ)</td>
<td>0.4%</td>
</tr>
<tr>
<td>WTW Index (1σ)</td>
<td>0.03%</td>
</tr>
<tr>
<td>WIW Index (1σ)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Index</td>
<td>1.67</td>
</tr>
<tr>
<td>Optical Loss</td>
<td><5dB/cm</td>
</tr>
<tr>
<td>Stress [MPa]</td>
<td>-126</td>
</tr>
</tbody>
</table>
- Repeatable optical loss <5dB/cm obtained with Al_2O_3 1μm / Ta_2O_5 2000Å
 - 12 wafers measured (total of 48 wafers run)
- Four cassettes run over two days
HAMR Data Summary

- Ta$_2$O$_5$ process developed for low loss core layers
 - Loss: <2 dB/cm
 - Rate: 334 Å/min
 - U%: 0.7% 1σ
 - WTW% 0.7% 1σ

- Al$_2$O$_3$ for cladding layers
 - Loss: <2dB/cm (with post deposition annealing – max temp 200°C)
 - Rate: >1000 Å/min
 - U%: 0.4% 1σ
 - WTW%: 0.3% 1σ

- Bi-layer Al$_2$O$_3$/Ta$_2$O$_5$ films show <5dB/cm loss

- SiO$_2$ films in development