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IntroductionIntroduction
Motivation: Designing a reliable HDD requires a rigorous understanding of the 

most prevalent failure modes/mechanisms, and a means to predict their impact on 
end-user failure rates. 

HDD reliability information can be obtained from a variety of sources 
End user – Reliability information from customers can be the hardest to obtain, is often times the most 

ambiguous, and can be difficult to feedback into product design.
Customer qualification – Reliability Demonstration Test (RDT) on well controlled sample distribution to 

determine intrinsic reliability of product  (AFR% / MTBF) .  Sample size can be limited.
Internal qualification – Highly Accelerated Stress Testing (HAST) during product development to 

investigate design margins.  Drives may not be sufficiently mature, but a substantial number are available. 
Subsystem testing – component-level testing (H/M, platform, firmware, channel) to evaluate product 

feasibility and uncover design limitations
Fundamental studies – Research and development into the scientific underpinnings of current 

technology, and evaluation of new technologies / alternative designs to meet future product specifications

Failure rates from drive-level testing (end-user, customer qualification, and 
internal qualification) are used to identify the predominant failure mechanisms

Failure of the head-disk interface is found to be the dominant factor 
impacting HDD reliability

A course-grained model for HDD reliability is developed to address the head-disk 
interface and the influence of a few vital parameters. 

Results of drive level testing are presented to vailidate the model
Model Refinement – results from component level and fundamental studies
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Failure Modes SummaryFailure Modes Summary
Highly Accelerated Stress testing results

Conducted during product development (>10,000 HDD’s)
Dominant failure modes (64%) are  HDI – related

RDT testing results (~100 HDD’s)

Majority of failures (75%) are HDI – related

Field Returns – Generic failure pareto (1000’s HDD)

Large fraction of “real” HDD failures are HDI-related
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All results point to the head-disk interface as 
the dominant contributor to HDD reliability 

Can we develop a deterministic model to predict 
these failures?
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Dominant HDI-related failure mechanisms
and approximate failure rates

Failure Analysis Failure Analysis –– HDI FailuresHDI Failures
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Weak write / modulation (15%)

Head degradation (30%)
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Particle-induced scratch (5%)

Head-disk contact (45%)

90 – 95% of scratching results from direct contact between flying head and disk
Majority of head degradation failures result from head-disk contacts

100% of all modulation failures result from flying too low - “near”contact

Majority of HDI-related failures result from the head and disk 
coming into contact, or near contact
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Clearance is key to HDI ReliabilityClearance is key to HDI Reliability
Clearance, space between the slider and disk, 
is the primary factor for HDI reliability.

Small clearance results in an increased risk of 
head-disk contact

Zero or negative clearance results in eventual 
failure due to scratch or head degradation
Failure rates increase exponentially with 
decreasing clearance
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Reduced HDI failure rate requires minimizing head-disk contacts by 
maximizing clearance
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HDI reliability modelHDI reliability model
Objective: Provide reliability design criteria by modeling clearance, and 
predicting failure rates, under any given set of operating conditions.

Assumptions
Finite clearance 0% failure rate
Zero clearance 100% failure rate
Not a dynamic model, i.e. no explicit time dependence is incorporated into model

Parameters identified as affecting drive clearance (z) include:
Incoming clearance distribution (zo)
Temperature
Altitude 
Humidity 
Duty cycle: Clearance loss during seek (not covered)

Sensitivity  of clearance on each parameter measured independently 
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Clearance also decreases with 
increasing temperature

Consistent with temperature derating
discussed above.

Clearance decreases w/ increasing altitude
Less lift is generated by the ABS as the pressure drops
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Clearance
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Theoretical model developed to describe the effect of humidity on clearance 
Compression under ABS can result in local supersaturation of water vapor
Supersaturated water vapor is incapable of supporting ABS
Effective ABS lift drops – fly height decreases

Clearance is Sensitive to HumidityClearance is Sensitive to Humidity

The head-disk clearance decreases with drive humidity
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For this HDI design, clearance decreases with 
water vapor pressure as – 0.2 nm/kPa
(comparable to altitude effect)

For example, clearance at 60 C drops by 3. 5 nm
when the humidity is increased from 0 90%RH

(Strom et al., IEEE Trans. Magn. (2007), 43, 3301)
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Factors impacting failure rates:
Initial clearance
Temperature sensitivity
Altitude sensitivity
Humidity sensitivity

Data input into Monte 
Carlo simulations
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The failure predictions were then compared directly with results obtained from 
standard HDD reliability testing conducted under the specified temperature / 
altitude / humidity conditions
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)()( 0 RHfPbTaznmClearance −∆−∆−=
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Conditions: Variable altitude test conducted at two temperatures

Quantitative agreement found between model 
and experiment

Failure rate increases with increasing temp
Failure rate increases with increased altitude

Experimental vs Model results

T = 25C
T = 60C

∆ T



IDEMA Reliability Symposium 11

Conditions: Fixed Temperature (T = 70oC) / variable humidity ( 5 – 95%)

Model failure rate predictions vs Experimental Data

Excellent agreement observed
Indicates validity of approach for clearance / humidity dependence
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Summary of clearanceSummary of clearance--based reliability modelbased reliability model

A clearance-based reliability model was developed and successfully tested.

The following parameters affecting clearance have been measured and 
incorporated in the model:

Initial clearance distribution 
Operating temperature
Altitude
Internal drive humidity (Developed theoretical model of humidity affect on clearance)

On the basis of the excellent correlation with experiment we conclude that. 
slider-disk clearance should be treated as a critical parameter by which to 
design a mechanically reliable magnetic hard disk drive.

Cautionary note:  The impact of humidity and temperature on drive failure rates 
in the field cannot be attributed exclusively to the clearance effects discussed 
above.  
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“Fly-height On Demand” (FOD) concept
Head-disk spacing is controlled by resistive heating of the pole tip region of the head

Head-disk Spacing Control

Thermal 
Expansion

Element spacing
Nominal FH

FOD Off FOD On

4.5nm
11nm

Disk

Thermal actuation is only performed during read and 
write operations 

Since head – disk occur only during FOD actuation, 
the “effective” duty cycle, and AFR are reduced

Clearance measured by magnetic signal change via 
the Wallace spacing loss equation

FOD allows for a fourfold decrease in the std. 
deviation of the clearance.

Current FOD systems actively compensate for 
changes in drive temp, altitude, and humidity

Future designs promise to supply real time 
feedback on spacing fluctuations (analogous to 
position error signal) 
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Does FH control solve all our problems?
Finer Details – Glide Avalanche

Physico-chemical properties of disk lubricant 
Long-term effects of temperature
Other adverse impacts of high humidity

The Future Challenge

The effect of intermolecular forces when macroscopic objects are
separated by nanoscopic distances – van der Waals interaction forces

FH Distribution

DISK

Distribution of DISK  
GLIDE  AVALANCHE

Mean Clearance 

4nm

5nm
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Molecularly Molecularly --Thin PFPE Lubricant FilmsThin PFPE Lubricant Films
Energetics of molecularly thin PFPE films are 
dependent on the amount of material present

Surface-induced confinement results in properties 
that deviate substantially from bulk material.  
Anomalous materials properties – presence of 
disjoining pressure unique to molecularly-thin films 
Tthickness dependent film properties

• Lubricant displacement by flying head
• diffusion coefficients (effective viscosity), 
• Adhesive forces
• Friction forces

Oscillatory polar surface energy of PFPE films 
indicates layering phenomenon

Thermodynamic instabilities develop
Readily apparent in terraced spreading 
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Lubricant Stability Lubricant Stability –– AutophobicAutophobic dewettingdewetting
Oscillatory polar surface energy, χp results in a disjoining pressure ( Π = - dχ/dh) 
that changes sign as a function of film thickness 
Thermodynamic stability requires that Π >0
When Π < 0, film is unstable and will spontaneously dewet.

Spontaneous dewetting

Π < 0 : Dewetted lubricant droplets

Disjoining Pressure Zdol (MW =4000)

dewetting

26.0 A

30.0 A

OSA Images
Π > 0
No dewetting

Waltman, Khurshudov, Tyndall
Trib. Lett. (2002), 12, 163.
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Impact of Impact of dewettingdewetting

9.6 A

9.9 A

10.3 A

Zdol 1350

Dewetting of Zdol (MW = 1350)
Homogenous films observed when film 

thickness, h, < 10 
Lubricant dewetting occurs at h > 10

Clearance measurements
Acoustic emission results
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Lubricant Lubricant dewettingdewetting produces produces ““soft particlessoft particles”” that can interact with the that can interact with the 
flying sliderflying slider

∆Z > 4nm
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Lubricant Stability Lubricant Stability -- DewettingDewetting
PFPE lubricant layering on surfaces is ubiquitous

Other surfaces
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Moisture Moisture ––related failures modesrelated failures modes
High moisture levels inside drive interior can adversely impact reliability
Failure mechanism #1: Corrosion (well-known phenomenon)

Failure mechanism #2: Clearance loss due to supersaturation under flying head 
(included in failure model discussed above)
Failure mechanism #3: Condensation of long-lived water microdroplets on 
both heads and disks

Droplets are abnormally long-lived
Droplets reduce clearance / 
increase head-disk interaction
Decreased reliability

45 min After Exposure

160 min After Exposure

6 hr After Exposure

21 hr After Exposure

45 hr After Exposure

4 days After Exposure

11 days After Exposure

51 days After Exposure
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Schematics of Lubricant BondingSchematics of Lubricant Bonding
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Z-Tetraol

PFPE lubricants are available with a variety of backbone structures, 
molecular weights and functional end-groups.

Lubricants with functionalized end-groups will spontaneously bond to the disk.

Extent of lubricant bonding is dictated by the lube, the temperature and RH.
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Lubricant bonding Lubricant bonding 
Exposure to elevated temperature induces a 

(reversible) bonding of the lubricant to the disk. 

Bonding adversely impacts lubricant mobility 
and contact forces 1 10 100 1000 10000
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Force required to separate the head and disk surfaces 

increases as the lube bonding ratio increases.
Severity of contact (time in contact) increases as bonded 
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HDI failure rate will scale with the adhesion hysteresis
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Phase transitions in PFPE lubricantsPhase transitions in PFPE lubricants
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PPFE bonding kinetics are non-classical
Time dependent rate coefficients
1D diffusion – limited reaction
Functional form of rate coefficients can change 

as a function of temperature
Results indicative of a phase transition 

Shear modulated AFM measurements confirm a 
transition from solid-like to liquid-like behavior

Transition temperature is dependent on the 
lubricant molecular weight, PFPE structure and 
nature of carbon surface

Impact of this change in lubricant mobility 
on HDI reliability has not been addressed
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Future (current) Challenge Future (current) Challenge -- Intermolecular ForcesIntermolecular Forces
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It is well known that attractive, intermolecular forces are generated when 
macroscopic bodies are separated by nanoscopic distances (d < 10 – 20nm). 
For van der Waals forces, the attractive force is dependent on three factors: 

g = Geometric factor defining the ‘effective’ interaction area
A = defines interaction strength between materials on the two surfaces

We operate the head-disk interface in a regime where these forces are not 
insignificant, and will only get more prominent in future products

2d
gAF ∝

Experimental
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Impact of VDW forces at the headImpact of VDW forces at the head--disk interfacedisk interface
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The attractive VDW forces that develop at the HDI reduces the magnitude of 
the disjoining pressure resulting in a vertical expansion of the lubricant film
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ApproachAt sufficiently close distances, the lube 
will “jump” from the disk to the head. 

This phenomenon will limit the 
minimum separation distance, and thereby 
contribute to the glide avalanche. 
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Effect of Molecular Weight on Glide AvalancheEffect of Molecular Weight on Glide Avalanche
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A) Reduced rotational velocity B) Reduced pressure

Both techniques show clearance decreases with increasing PFPE molecular 
weight

(Khurshudov and Waltman, Trib. Lett. (2001), 11, 143)

∆Z ~ 2nm
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Effect of film thickness on Slider disk interactions

Disjoining pressure characterizing film adhesion decreases rapidly with 
increasing film thickness

Thicker films should jump to contact sooner than thinner films
Experimental results confirm this expectation

These results also indicate that Intermolecular forces are currently 
limiting glide avalanche.
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Intermolecular Forces: AdhesionIntermolecular Forces: Adhesion
Previous results suggest that decreased lubricant film thickness would be 

beneficial from a clearance perspective
The Adhesive Force generated between the disk and slider (stickiness of 
interface), increases with decreasing film thickness, however

Increased adhesive (and frictional) force at low film thickness will increase 
the severity of any head-disk contact  
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PrePre--contact Frictional Forcescontact Frictional Forces
Pre – contact Frictional forces are generated at low clearances in films of 

thicknesses used at the HDI
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Physical contact
Friction detected

d = 1.5nm

Friction starts at nominally 1.5nm 
prior to establishment of physical 
contact

Friction signal shows displays a 
maximum value prior to contact

Magnitude of friction maximum 
scales inversely with film thickness

The origin of these phenomenon 
are not well understood

This could also contribute to 
defining our minimum separation 
distance.  

Friction maximum
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SummarySummary
HDD failure rates can be dominated by the HDI
HDI failure rates depend strongly on clearance

Mean clearance
Std. deviation of clearance
Sensitivity to environmental parameters

Interface materials (lube + carbon) dictate HDI performance and can impact 
clearance

Lube thickness, type and molecular weight
Carbon type and thickness
Temperature and humidity

Physics underlying many of the interface materials properties is still not  
understood completely

Intermolecular forces (both adhesive and friction) will fundamentally limit the 
lowest head-disk clearance that can be obtained (2 – 3nm) 


