Beyond 1Tbits/in² – the Future of Recording Media Technology

Hiroyuki Hieda
Research & Development Center
Toshiba Corporation
Bit Patterned Media

- Beyond 500Gbps: thermal fluctuation limit in conventional granular perpendicular media

- Tradeoff between maximum write field and medium coercivity
 - Write field saturation

- 1 bit on 1 magnetic dot
 - High thermal stability and low write field
BPM Fabrication Concerns

• EB lithography
 - Presentation of 25nm dot-pitch findings at MNE 2006
 ▪ Carixalene resist → low sensitivity
 ▪ Lengthy EB mastering period
 - Advanced resist materials of much greater sensitivity with high resolution needed

• Patterning using Self-assembly Materials investigated
 - Resolution not equipment dependant
Self-Assembly Material Templates

- Phase separation of PS and PMMA were applied to form periodic dot arrays
 - <10nm pitch dots arrays are possible
 - 10Tbpsi areal density is feasible
Guided Self-Assembly for BPM

- Combination of self-assembly with top-down lithography
 - Self-assembled dot alignment on designated tracks
Guided Self-Assembly Methods

- Defect-free dot alignment
 - Achieved using 2D guide method
R/W Demonstration on BPM

• Read/Write testing with flying heads
 – 80nm dot pitch

Circumferentially aligned CoCrPt dots fabricated on 2.5-inch HDD substrates using guided self-assembled methods

Read-back signal from flying head

Magnetic Force Microscopy image
Next Step: Transcending 5 Tbits/in²

- Dot diameter roughly <8nm
 - Exposure to BPM thermal fluctuation

- Heat-Assisted Magnetic Recording (HAMR) on BPM
 - Enables higher densities
Granular Structure Perpendicular Media with HAMR

- Thermal fluctuation occurs following heat spot exposure on the magnetic field
 - Accelerated thermal fluctuation during cooling process
HAMR on BPM

- HAMR on single domain magnetic dots lessens thermal fluctuation
 - Benefit of magnetic field suppression on the dot
HAMR-BPM Materials: FePt

T. Maeda:

Highly textured ordered FePt film: $\Delta \theta_{50} = 8^\circ$

- FePt materials selected for the HAMR-BPM research
Circumferentially-aligned FePt Dots

- 1Tbpsi-level requires 30 nm dot pitch
 - Fabrication successful across the HDD substrate
Microscopic Structure of FePt BPM

Sectional TEM Images

- No significant damage was observed
Self-assembling Periodic Pattern -- 3 Tbpsi

- 15 nm pitch periodic pattern was obtained
- 3 Tdots/inch² BPM fabrication is achievable
Summary

• Self-assembling polymer template methods for Tbpsi-level BPM fabrication demonstrated
• HAMR on BPM can lead to 10Tbpsi levels
• Fabrication of BPM using FePt and Co/Pd was achieved
 – Damage seems to be negligible
 – Research is continuing

Acknowledgment:
This work partially belongs to the “Terabyte optical storage technology” project which OITDA contracted with the Ministry of Economy Trade and Industry of Japan (METI) in 2002 and contracted in 2003 with the New Energy and Industrial Technology Development Organization (NEDO) through METI funding. This work was also supported in part by a Grant-in-Aid from the IT-program (RR2002) of MEXT (Japanese Ministry of Education, Culture, Sports, Science and Technology).
Thank you for your attention.