Electrostatic Discharge (ESD) Breakdown between a Recording Head and a Disk with an Asperity

Al Wallash and Hong Zhu

Hitachi Global Storage Technologies
San Jose, CA
Outline

• Background
• Purpose
• Experimental Setup
• Results
 • Breakdown behavior with and without asperity
 • Failure analysis: where does breakdown occur?
• Conclusions
Background

- **Electrical breakdown across spark gap**
 - Gap spacing < 5 \(\mu \text{m} \)
 - DC pre-breakdown current: ~ nA
 - Field emission (or tunneling)
 - Fowler-Nordheim equation
 - Transient discharge current: ~ mA
 - Physical damage
 - melting

- **Factors that affect breakdown voltage**
 - Dielectric film properties
 - Thickness and material
 - Electrode
 - Geometry of anode and cathode
 - E-field enhancement at sharp edges
 - Materials: work functions

\[
I = aE^2 e \left(\frac{-b'\Phi^{3/2}}{E} \right)
\]
Purpose

- **Hard disk drive: Head disk interface = spark gap**
 - Thin carbon overcoat (COC) films
 - ~ 3nm head, ~3nm disk
 - Fly height = air gap:
 - <10nm
- **Head-disk contact possible**
 - Asperities
 - Load/unload

- **Study electrical breakdown with head-disk asperity contact**
 - *Electrical breakdown voltage?*
 - *Physical damage to slider air bearing surface?*
 - *Likelihood of ESD damage to read sensor?*
Experimental Setup

- **Modified Guzik XY Spin stand**
 - Float suspension and disk
 - Disk connected to Source/Measure Unit
 - Floating suspension connected to ground through current probe

- **Measurements**
 - Voltage on disk, DC current, transient current (2 GHz bandwidth)
 - Acoustic emission (AE) and thermal asperity (TA) to position sensor over asperity
 - GMR resistance (R), track averaged amplitude (TAA), asymmetry

HDD: The Next 50 Years

[Image of HDD components]
Experimental Setup

- **Heads and media**
 - 40 GMR heads (60 Gb/in²) on a metal AlMag disk; 15k RPM
- **Asperity**
 - Indentation: diamond spherical tip with 50 µm radius
 - Pile-up height ~ 30 nm
- **Test Sequence**
 - Ramp disk voltage: + or -
 - Dwell time: 1 sec
 - Measure R and TAA
 - **Breakdown:** transient current > 1mA

![Graph showing disk voltage and time](image)

HDD: The Next 50 Years
Current vs. Voltage

- Increase in DC current, then breakdown
- Breakdown voltage
 - Without asperity (smooth disk): 3.4V
 - With asperity: 1.6V

HDD: The Next 50 Years
Breakdown Voltage

Average breakdown voltage

<table>
<thead>
<tr>
<th></th>
<th>Without asperity</th>
<th>With asperity</th>
</tr>
</thead>
<tbody>
<tr>
<td>+V</td>
<td>3.4</td>
<td>1.7</td>
</tr>
<tr>
<td>-V</td>
<td>-3.3</td>
<td>-2.65</td>
</tr>
</tbody>
</table>

- Both + and – disk voltage
- Significant decrease in breakdown voltage with asperity
Behavior vs. Voltage: No asperity

- TAA increase: electrostatic attraction = spacing decrease
- No TAA or resistance change after breakdown

No asperity (smooth disk)

Breakdown at 3.4V
Behavior vs. Voltage: With asperity

- With asperity positioned over read sensor during breakdown
 - TAA changes
 - Resistance increase
- Read sensor damaged by breakdown over asperity

HDD: The Next 50 Years
Slider Damage: No Asperity

- Sensor area largely unaffected
- Breakdown to slider body
- Transient current between slider and disk
 - GMR sensor undamaged
Slider Damage: With Asperity

- Breakdown at TiC conductive grains on air bearing surface in center pad
 - Similar to case with no asperity

- Shields and sensor show damage
 - Breakdown between asperity and shields/reader
 - Direct current flow to GMR leads
 - *Severe magnetic damage similar to ESD damage during handling*
Summary and Conclusions

<table>
<thead>
<tr>
<th></th>
<th>Without asperity</th>
<th>With asperity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breakdown Voltage (V)</td>
<td>+3.4 / -3.3</td>
<td>+1.7 / -2.6</td>
</tr>
<tr>
<td>Breakdown location</td>
<td>TiC grains on slider</td>
<td>TiC grains and shields/sensor</td>
</tr>
<tr>
<td>Read sensor damage</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. Significant reduction in head-disk breakdown voltage (~50% reduction)
2. Additional damage to shields and sensor area
3. Severe magnetic damage to the read sensor

Important to include asperities in head-disk breakdown reliability testing

HDD: The Next 50 Years

IDEMA®
Backup slides
Current vs. + and – Disk Voltage

Four different heads and disks

- Negative voltage, no asperity
- No measurable pre-breakdown current

HDD: The Next 50 Years
H45, with asperity, +V on disk, head died

H46, with asperity off sensor, +V on disk, no sensor damage
Optical Slider Damage: Asperity away from sensor
Step edge

Breakdown damage

Step edge